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The CGNS system consists of a collection of conventions, and conforming software, for the storage and retrieval of
Computational Fluid Dynamics (CFD) data. It facilitates the exchange of data between sites and applications, and
helps stabilize the archiving of aerodynamic data. The data are stored in a compact, binary format and are accessible
through a complete and extensible library of functions. This API (Application Program Interface) is platform
independent and can be easily implemented in C, C++, Fortran and Fortran90 applications. The CGNS system supports
structured, unstructured and mixed topology, where multi-block connectivity may be either one-to-one abutting,
mismatched abutting or overset. It defines standards for the storage of grid coordinates, flow solutions, boundary
conditions, convergence history, reference state and geometry data. Dimensional units and nondimensionalization
information may be associated with each type of data. Additionally, it provides conventions for archiving the
governing equations including the gas, viscosity, thermal conductivity, turbulence and diffusion models. The CGNS
system can be extended to other types of engineering analysis data, and serve multi-disciplinary applications. It is
offered to the CFD community for the purpose of establishing a standard for aerodynamic data storage. This paper
presents the different components of the CGNS system, from the essence of its constituents to its supporting data
structures and software capacity. It demonstrates the facility to implement the CGNS system through a series of short
examples, followed by a review of its incorporation into both research and commercial CFD applications.

1. Introduction

A series of meetings, held over approximately two years
between airframe manufacturers and the government
research community, addressed the improvement of
means for transferring NASA technology to industrial
use. It was held that a principal impediment to
technology transfer was the widely disparate data-
handling mechanisms endemic to the code development
process. It is unfortunately too common to see the same
CFD data set translated into various formats to perform
the different tasks related to CFD analysis. Applications
such as grid generation, flow computation, post
processing or data visualization often use their own
archiving system. As a result, different copies of the
same data must coexist to insure compatibility with the
different software tools. These data sets hold the same
information expressed in different data structure systems
and formats. Not only does this multiplicity of the data
set waste storage media capacity and CPU time, but it
also generates an enormous overhead in terms of data
translator development, additional software and data
management, customization of pre- and post- processors,

etc. When integrated over the entire industry, these extra
efforts reduce the cost effectiveness of CFD while impairing
its development.

The “CFD General Notation System” (CGNS) was
conceived to provide a general, portable and extensible
standard for recording and recovering analysis data
associated with the numerical solution of fluid dynamic
equations.1 It offers the opportunity for seamless
communication between sites, platforms, and applications.
By improving the interoperability of existing and future
CFD tools, the CGNS system allows new software
development to focus on functionality and reliability. It
should therefore lead to the development of shared, reusable
software selected on technical merit without concern for I/O
compatibility.

The principal target of the CGNS system is the data
normally associated with compressible viscous flow (i.e. the
Navier-Stokes equations), but the standard is also applicable
to simplified models such as Euler and potential flows.
Much of the standard and conformed software utilities are
applicable to computational field physics in general.
Disciplines other than fluid dynamics would need to
augment the data definitions and storage conventions, but
the fundamental database software, which provides platform
independence, is not specific to fluid dynamics.

The CGNS conventions and software provide for the
recording of an extremely complete and flexible problem
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description. A database may contain any number of
structured and/or unstructured zones. These zones are
described with their grid coordinates and connectivity
information. Three types of multi-block connectivity are
supported; overset (chimera), one-to-one abutting (point
matched), and mismatched abutting. For unstructured
zones, the element connectivity can be stored for a wide
range of linear and higher order element shapes.

The mesh data is linked to the CAD data within the
CGNS system to facilitate quick re-meshing after design
changes or mesh optimization. The flow solutions may
be defined at the vertices, or at cell, face or edge centers.
Solution vectors are stored using precise naming
conventions. Any number of flow variables may be
recorded, with or without use of the standardized names.

The boundary condition specifications were developed to
combine simplicity of initial implementation and
generality to facilitate future extensions. They define
boundary condition types, which establish the equations
to be enforced. Dirichlet or Neumann boundary
condition data may additionally be specified using
CGNS conventions for data-name identifiers. The
boundary condition specifications are general and
flexible enough to provide for future extensions.

The CGNS system also provides for the storage of
several types of auxiliary data. This includes the
conventions for archiving the governing flow equations,
the reference state quantities, the convergence history
information, generic discrete or integral data,
dimensional units and exponents, and
nondimensionalization information. User's comments or
documentation may be appended nearly anywhere, and it
is also possible to add user defined or site specific data.

Not all of these data need to be present in the CGNS
database at any particular time. The overall view is that
of a shared database accessible by various software tools
common to CFD: flow solvers, grid generators, field
visualizers, post-processors, and so on. Each of these
applications serves as an editor of the data, reading,
adding to or modifying it according to that application's
specific role.

Because of its generality, CGNS provides for the
recording of much more descriptive information than
current applications normally use. However, the
provisions for these data are layered so that much of it is
optional. It should be practical to convert most current
applications to the CGNS system with little or no
conceptual change, retaining the option to take
advantage of more elaborate description as that becomes
desirable.

A CGNS database may be written over any number of
data files. Efficient internal linking allows the

partitioning of the data over several files without reducing
the performance of the data exchange. The individual files
are more portable due to their reduced size, and enhance the
functionality of the system. For example, the surface mesh
may be kept separately from the field mesh, or several
solutions may be linked to the same grid definition. Various
mesh configurations can be combined instantly since the
different databases need not be merged into a single file, but
may be simply referenced. This flexibility facilitates
parametric studies where various sub-domains may be
automatically cycled over, and eases the management of
interchangeable parts.

The CGNS system may be implemented in any CFD
applications through the use of a complete and self-
describing set of functions. This API is accessible through
C or Fortran77 function calls allowing implementation in C,
C++, Fortran77 and Fortran90 applications. The databases
themselves are stored in compact C binary files. They are
made machine independent through internal byte ordering
translations, performed as needed and invisible to the user
or application. The API performs extensive error checking
on the database and informs the user of any irregularities via
precise error diagnosis messages.

Currently the CGNS system is available on most
architecture commonly used for CFD analysis: Cray/Unicos,
SUN/Solaris, SGI/IRIX, IBM/AIX, HP/UX, DEC-
Alpha/OSF. Windows NT support, on Dec and Intel
platforms, is planned in the near future. Several
applications, in the CFD research community and in
industry, have already incorporated the CGNS standard
successfully.

This paper describes the different elements of the CGNS
system and presents examples of its implementation.
Section 2 is divided into several sub-sections, each
describing an individual component of the CGNS system.
The hierarchical data structure “Advanced Data Format”
(ADF) used to archive the databases is first presented. It is
supported by a data exchange library called ADF Core,
which comprises a set of low level routines for I/O
operations on an ADF file. Following the presentation of
the ADF and ADF Core, the “Standard Interface Data
Structures” (SIDS) are introduced. The SIDS specification
constitutes the soul of the CGNS system. Not only does it
define the CGNS data structure, but it also establishes
precisely the intellectual content of CFD-related data and
prescribes conventions and nomenclature to standardize its
archiving. Once the two basic elements of the CGNS
system are described, the ADF and the SIDS, the next sub-
section explains how to combine them together to form the
CGNS system. This process is referred to as the “SIDS-to-
ADF File Mapping”. The final element of the system is the
CGNS mid-level library of software functions. It integrates
the standards established by the other constituents of the
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CGNS system into a user friendly API. The CGNS
library is designed to facilitate the implementation of
CGNS into any CFD applications. Section 3
demonstrates the implementation of the CGNS system
through a series of short examples, and presents an
overview of commercial and research CFD tools
currently supporting the CGNS system. Finally, this
paper concludes with a calendar of public releases
planned for 1998, followed by recommendations for
future enhancements.

2. The Elements of the CGNS System

2.1 The Data Structure ADF

The “Advanced Data Format” (ADF) is a concept
defining how the data is organized in the storage media.3

It is based on a single data structure called an ADF node,
designed to store any type of data. Each ADF file is
composed of at least one node called the “root”. The
ADF nodes follow a hierarchical arrangement from the
root node down, as shown in figure 1.

The ADF node structure is composed of the following
information:

� ID: A unique identifier to access a node within
a file.

� Name: A character field used to name the node.
It must be unique for a given parent.

� Label: A character field used to indicate the
type of data contained in the node.

� Number of sub-nodes: The number of children
directly attached to a node.

� Names of sub-nodes: The list of children
names.

� Data type: A character field specifying the type of
data (e.g. real, complex, character) associated with
the node.

� Number of dimensions: The dimensionality of the
data.

� Dimensions: An integer vector containing the
number of elements within each dimension.

� Data: The data associated with the node.

An ADF data structure is a directed graph. Since the nodes
hold the information about their children but ignore the
identity of their parents, the hierarchy may only be traversed
in one direction. The root node points to its children, which
in turn point to theirs, and so forth. This simple pattern is
repeated throughout the whole file resulting in a flexible
hierarchical structure. There is no restriction on the number
of children that a node can have, or on the number of levels
in the hierarchy.

A node’s children may be defined within the same ADF file,
or in a different one. ADF supports the linking of ADF
nodes stored in any ADF files. Since an ADF node may
point directly to a child node located in another file, there is
no performance penalty in using this feature. Internal and
external links are illustrated in figure 1. The node L1 is
linked to the node N5 within the same data file whereas the
node L2 points to the node F4 located in a different ADF
file. An ADF database is defined as the complete tree
associated with a single ADF root node; this database may
encompass several ADF files through the use of links.

This hierarchical structure is particularly suited for the
storage of CFD databases, which are typically composed of
a small number of very large arrays. A tree structure may
be quickly traversed and sorted without the need of
processing irrelevant information. The data exchange may
therefore concentrate on the targeted arrays, resulting in
improved performance. Although especially appropriate for
the management of CFD-related information, the ADF is
general and can be used to archive any type of data.

The ADF file has a header section that contains information
about the file itself, such as the ADF library version used to
create and modify the file, the date and time of creation and
modification, and the data format used in the file (IEEE Big
or Little Endian, Cray, etc.).

2.2. ADF Supporting Software: The ADF Core

The ADF Core is a library of low level I/O subroutines
designed to implement the ADF concept.3 The ADF format
and library were developed as part of the CGNS project
after examination of several data systems. These include
the “Hierarchical Data Format” (HDF) developed at the
National Center for Supercomputing Applications (NCSA)
at the University of Illinois, the “Common File Format”
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Fig.1 ADF Hierarchy of Nodes
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(CFF) created at McDonnell-Douglas Corporation (now
Boeing St-Louis), and the “Network Common Data
Form” (netCDF) sponsored by the National Science
Foundation.7,8,9 Although the existing systems present
interesting features, none provide an appropriate
hierarchical structure while affording the portability and
extensibility of C software. It was therefore preferable
to develop the ADF system.

The ADF Core is written in ANSI C to enhance the
portability of the software, but provides a complete
Fortran interface. It enables construction and browsing
of new or existing ADF tree structures. The ADF Core
is composed of 34 functions performing the following
operations:

� open, close or delete and ADF file
� read or set the data binary format
� get the root-id or a node-id
� create, delete or move a node
� create, read or test a node link
� get the children of a node
� read or write the constituents of a node: name,

label, data type, dimension, dimension vector
and data

� perform version and error control

An ADF database is self-describing in the sense that it is
not necessary to know its contents in order to read it.
Using the ADF Core, one can easily browse through the
hierarchy of an ADF database to reveal its constituents.

The databases are stored in compact C binary format.
Each ADF node data field is characterized with a data
type and the dimension of the data array. The supported
data types are integer 32/64, unsigned integer 32/64, real
32/64, complex 64/128, character, byte and link. The
ADF Core uses its own notation convention to identify
the different data types independently of the system
architecture. Table 1 lists the supported data types with
their corresponding notation and machine
representations. A given data type notation results in
different binary representations depending on the system
architecture.

While most of the supported platforms use the IEEE Big
Endian standard, the Intel-Paragon and DEC-Alpha
elected the IEEE Little Endian numeric format.
Additionally binary files may be written using either a
32 or a 64-bit representation. These differences in the
architecture native formats are resolved within the ADF
Core insuring machine independence. An ADF file
keeps track of the data format and operating system used
at its creation. Whenever a binary format translation is
necessary, the ADF Core executes it automatically. This
is accomplished internally - without the need of any user
intervention.
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Table 1. ADF Supported Data Types

When opening a new ADF file, it is also possible to choose
the binary representation independently of the system
architecture. For example, an ADF file may be written in
the Cray native format from an SGI running IRIX (or vice
versa). If unspecified, the ADF Core uses the local
architecture native format by default.

The ADF Core has been tested and used on several
platforms, namely Cray/Unicos, SUN/Solaris, SGI/IRIX,
IBM/AIX, HP/UX, DEC-Alpha/OSF and Intel-Paragon.
Aside from CGNS, the ADF Core has also been adopted as
the underlying data structure for the latest release of the
“Common File Format” (CFF), which is used by the
NPARC Alliance’s code WIND.10,11 CFD codes could use
the ADF Core directly, but have the advantage of higher
level routines provided by the CGNS library (section 2.4);
this library is built on top of the ADF Core. The ADF Core
software and documentation are available at
http://www.cgns.org.

2.3. The Standard Interface Data Structures, SIDS

The “Standard Interface Data Structures” specification
constitutes the essence of the CGNS system. While the
other elements of the system deal with software
implementation issues, the SIDS specification concerns
itself with defining the substance of CGNS. It precisely
defines the intellectual content of CFD-related data,
including the organizational structure supporting such data
and the conventions adopted to standardize the data
exchange process.2

The SIDS are designed to support all types of information
involved in CFD analysis. While the initial target was to
establish a standard for 3D structured multi-block
compressible Navier-Stokes analysis, the SIDS extensible
framework now includes unstructured analysis, 2D
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configurations, hybrid topology and geometry-to-mesh
association. Although the SIDS specification is
independent of the physical file formats, its design was
targeted towards implementation using the ADF Core
library. Some of the language components used to
define the SIDS are meant to directly map into elements
of an ADF node. Furthermore, the data structures
specified in the SIDS are organized in a hierarchical
manner in accordance with the ADF topology.

The data sets typical of CFD analysis tend to contain a
small number of extremely large data arrays. This
implies that the I/O system must efficiently store and
process large data arrays. The SIDS are designed to
optimize the performance of the data exchange process
supported by the ADF Core. A second implication of
the nature of the data resides in the opportunity to
include thorough description in the file with relatively
little storage overhead and performance penalty. For
example, the flow solution of a CFD analysis may
contain several millions values. Therefore, with little
overhead, it is possible to include information describing
the flow variables stored, their location in the grid, and
the dimensional units or nondimensionalization
information associated with the data. The SIDS
specification takes advantage of this situation and
includes an extensive description of the information
contained in its data structures.

Other design considerations were the minimization of
duplicated data within the hierarchy and the ability to
include documentation throughout the database.
Whenever possible, generic data structures were
developed to hold various types of CFD information. On
the other hand, consistency dictated the development of
specialized data structures for certain types of CFD-
related information.

The SIDS conventions provide for the recording of an
extremely complete and flexible problem description.
This section gives an overview of the main data
structures defined in the SIDS, as well as some examples
of the standardized nomenclature. It demonstrates the
vast range of CFD analysis data covered by this
standard, and the explicitness in which the data can be
archived using the SIDS conventions. It is important to
keep in mind, while reading the next paragraphs, that all
of these data need not be present. The SIDS are layered
so that much of its data structures are optional.

In the following sub-sections, standard SIDS names and
identifiers are differentiated from the regular text by the
use of a different character font. Most data structure
names carry the suffix_t (for type) to distinguish them
from regular data.

2.3.1 CGNS Base Data Structure:CGNSBase_t

The data structure at the root of the CGNS tree graph is
calledCGNSBase_t. It is illustrated in figure 2. It contains

the dimensionality of the computational grid
(IndexDimension ) and several sub-structures such as the
zones (structured or unstructured blocks) constituting the
CFD model. TheCGNSbase_t includes also the family
sub-structures where geometry-to-mesh associations are
recorded. Additionally, auxiliary information applicable to
the entireCGNSBase_t data structure may be stored at this
level. This includes the reference state data, dimensional
units, nondimensionalization information (DataClass_t ),
flow equation sets, documentation (Descriptor_t ) and
convergence history data structures. The dimensionality of
the computational grid (IndexDimension ) is the sole
mandatory element of this data structure. It is defined as the
number of indices needed to uniquely identify a vertex
within the grid.

2.3.2 Zone:Zone_t or ZoneUnstructured_t

The zone data structure contains all the information
pertinent to an individual zone or grid block within the
domain. Two types of zones are defined in the SIDS,
ZoneUnstructured_t and Zone_t for unstructured and
structured mesh block respectively. For both structured and
unstructured blocks, the only mandatory elements of the
zone data structure are the number of cells and vertices
contained in the zone. A zone may optionally contain sub-
structures defining the physical coordinates of the
computational grid, the flow solutions, the interface
connectivity and the boundary conditions. Additionally,
auxiliary information applicable to the entire zone may be
stored at this level. This includes the data structures defined
for reference state data, nondimensionalization information,
dimensional units, flow equations set, documentation and
zone convergence history. Figure 3 illustrates the
constituents of a structured zone data structure.
Unstructured zones contain one additional data structure for
the definition of the element connectivity data.

Zone_t ZoneUnstructured_t

Family_t ReferenceState_t

ConvergenceHistory_t FlowEquationSet_t

DimensionalUnits_t DataClass_t

Descriptor_t IntegralData_t

IndexDimension

CGNSBase_t

Fig.2 CGNS High Levels Chart
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2.3.3 Grid Coordinates:GridCoordinates_t

The physical coordinates of the computational grid are
defined by the grid coordinates data structure, as shown
in figure 4. This structure contains a list of data arrays

representing the individual components of the position
vector. It also provides a mechanism for identifying
rind-point data (dummy layers) included within the
position vector arrays. If necessary, the
nondimensionalization information and dimensional unit
sub-structures may also be defined.

The SIDS support coordinate definition in Cartesian,
cylindrical and spherical coordinate systems. In
addition, it also provide the means to define local
(auxiliary) coordinate systems, often used to define
normal or tangential stresses. A series of standardized
names supplied by the SIDS unambiguously identifies
the content of each coordinate data array. These data-
name identifiers are self-describing, for example
CoordinateX and CoordinatePhi .

2.3.4 Flow Solution:FlowSolution_t

The flow solution data structure,FlowSolution_t , is
used to record one solution data set. There is no limit on
the number of solutions sets contained in a zone data
structure. Each solution set, in term, may include one to
several solution vectors. A flow solution data structure
could be used, for example, to hold the initial or restart
solution, while a second one could serve to record the
computed solution after some number of iterations.

The flow solution data structure contains all the sub-
structures found in the grid coordinate structure (data arrays,
dimensional information, rind-data and documentation),
with additionally the grid location parameter. Unlike the
grid coordinates, which always coincide with the vertices,
the flow solutions may be defined at the vertices, or at cell,
face or edge centers. This extra feature necessitates the
creation of two different data structures to hold grid
coordinates and flow solutions. Once again, the SIDS
specification regulates the variable names in order to
facilitate a standardized data exchange. A list of data-name
identifiers for typical Navier-Stokes solution variables was
established, and can be easily extended if needed. It
contains identifiers such asPressure , VelocityX ,
SkinFrictionY , MassFlow , etc. It is also possible to
record any type of site specific variables, even if they are
not included in the SIDS nomenclature.

2.3.5 Zone connectivity:ZoneGridConnectivity_t

The zone connectivity information may be recorded for each
zone under a general data structure called
ZoneGridConnectivity_t . This data structure is
illustrated in figure 5. It holds three sub-structures
responsible for the grid connectivity data,
GridConnectivity_t , GridConnectivity1to1_t , and
OversetHoles_t . It may also include some
documentation recorded in the sub-structure
Descriptor_t .

All
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GridCoordinates_t FlowSolution_t

ZoneGridConnectivity_t ZoneBC_t

Descriptor_t ReferenceState_t

DataClass_t DimensionalUnits_t

FlowEquationSet_t ConvergenceHistory_t

Nr of Vertices & Cells

Zone_t

Fig.3 Zone Data Structure

DataArray_t Rind_t

DimensionalUnits_t DataClass_t

Descriptor_t

GridCoordinates_t

Fig.4 Grid Coordinates Data Structure
GridConnectivity_t GridConnectivity1to1_t

OversetHoles_t Descriptor_t

ZoneGridConnectivity_t

Fig.5 Zone Grid Connectivity Data Structure
autics and Astronautics

three types of multi-block connectivity may be defined
ng the general connectivity sub-structure called
dConnectivity_t . It contains the list or range of
ices defining the interface in the current zone (receiver),
name of the adjacent zone (donor), the list of points on
donor side and a parameter specifying the type of

nectivity.

he interface is constituted of points having consecutive
ices, the patch may be defined by simply referencing the
t and last indices of the range. This patch definition
thod is calledPointRange . When the points do not

ve consecutive indices numbering, they are all recorded in
tructure calledPointList . For example, an abutting
-to-one interface between two structured blocks
resents a rectangular sub-range in the computational
ain. It can be simply defined using aPointRange .
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For overset interface, the points on the receiver side
identify the fringe points outlining the overset hole.
These are most likely non-consecutive indices requiring
the use of aPointList representation.

The list of points on the donor side,PointListDonor ,
contains the images of the receiver zone interface points
in the donor zone. These are real values identifying the
bi- or tri-linear interpolation factors used to define the
location of each receiver point in the donor zone grid.
For the particular case where the points on the donor side
coincide with those on the receiver side, the donor points
correspond to the indices of the nodes on the donor side.
If the donor zone is unstructured, each receiver node is
linked to an element of the unstructured block, in
addition to the interpolation factors. The types of
connectivity are identified using the standardized names
Overset , Abutting andAbutting1to1 .

A special sub-structure is defined in the SIDS for the
recording of an abutting interface patch with one-to-one
point matching between two adjacent structured zones.
In this particular case the connectivity may be entirely
defined by simply identifying the range of points
delimiting the interface in both adjacent zones, and a
transformation matrix describing the relative indices
orientation of the zones. This information is recorded in
GridConnectivity1to1_t , a special data structure
created for this particular case.

The grid connectivity information for overset grids must
also account for the overset holes within each zone.
These holes identify regions where the flow solution is
ignored since it is being solved in some other
overlapping zone. The data structureOversetHoles_t ,
located also within theZoneGridConnectivity_t

structure, holds the definition of the holes within a zone.
The OversetHoles_t data structure provides for the
recording of aPointList or a list of PointRange ,
any relevant documentation and the grid location (vertex
or cell center) referenced by the point indices.

2.3.6 Zonal Boundary Condition: ZoneBC_t

The boundary conditions can be defined either on mesh
patches or on geometrical entities (explained in section
2.3.12). Associating boundary conditions to mesh
patches permits specification of local data sets at the
vertices or face centers of the boundary condition patch.
The zonal boundary condition structure,ZoneBC_t , also
provides a means to define boundary conditions without
requiring geometric data in the file.

Within the hierarchy, theZoneBC_t structure is located
directly under each zone and contains the list of
boundary condition structures (BC_t ) pertaining to the
zone. EachBC_t sub-structure contains the boundary
condition information for a single patch of the zone. It

provides for the recording of a boundary condition type
(BCType_t ) as well as one or more sets of boundary
condition data (BCDataSet_t ). The BC_t data structure
also contains information describing the patch itself, such as
its location (PointRange or PointList ) and its normal
vector definition. Figure 6 illustrates the sub-structures
contain in the zone boundary condition data structure,
ZoneBC_t . The generic term “Auxiliary Data” is used in
place of the sub-structures ReferenceState_t ,
DimensionalUnits_t, DataClass_t , and
Descriptor_t .

The first item identifying the boundary condition equations
to be enforced at a given boundary location is the boundary
condition type,BCType_t . The boundary condition types
are subdivided in two categories:BCTypeSimple_t and
BCTypeCompound_t . For simple boundary conditions, the
equations and data imposed are fixed, whereas for
compound boundary conditions, different sets of equations
are imposed depending on local flow conditions at the
boundary. The boundary condition types are identified
using standardized names such asBCDirichlet ,
BCWallViscous and BCInflowSubsonic . The second
item used in the definition of a boundary condition is the
boundary condition data set,BCDataSet_t . It holds a list
of variables defining the boundary condition. Each variable
may be given as global data or local data defined at each
grid point of the boundary condition patch.

The coupling of a boundary condition type and a boundary
condition data set allows formation of the governing
equations at the boundary. For example, the boundary
condition typeBCNeumann indicates a Neumann condition
δQ/δn at the boundary. HereQ stands for the solution
vector andn for the normal to the boundary. The precise
equation is then built using the boundary condition solution
data specified in theBCDataSet_t :

δQ/δn = (δQ/δn)specified

PointRange
or Pointlist

InwardNormal

BCType_t Auxiliary Data

BCData_t
Dirichlet or Neumann

GridLocation_t

Auxiliary Data

BCDataSet_t

BC_t Auxiliary Data

ZoneBC_t

Fig.6 Zone Boundary Conditions Data Structure
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2.3.7 Flow Equation Set:FlowEquationSet_t

The FlowEquationSet_t data structure is used for
recording a general description of the governing flow
equations. This data structure may be included in the
CGNSBase_t structure or at the zone level, depending if
the equations defined are applied to the entire
configuration or to a specific zone.

The flow equation set data structure was designed to
balance the opposing requirements of extensibility for
future growth and initial ease of implementation. It is
intended primarily for archival purposes, providing
additional documentation of the flow solution.
However, it is foreseeable that these flow equation
structures may also serve as inputs for grid generators,
flow solvers, and post processors.

The FlowEquationSet_t data structure provides for
the storage of the general class of governing equations,
the gas, viscosity, thermal conductivity and turbulence
models, the turbulent closure equation, and the
dimensionality of the governing equations. Each of
these equations or models forms a sub-structure of the
FlowEquationSet_t structure. The flow equation set
data structure is illustrated in figure 7.

The governing equation class currently supported
include full potential, Euler, Navier-Stokes laminar,
Navier-Stokes turbulent, Navier-Stokes laminar
incompressible and Navier-Stokes turbulent
incompressible. When the Navier-Stokes equations are
used, the governing equation sub-structure
(GoverningEquations_t ) provides for the recording
of the diffusion terms modeled in the flow equations.

The thermodynamic gas model data structure,
GasModel_t , specifies the equation of state used in the
governing equations to relate pressure, temperature and
density. Two model types are supported,Ideal and
VanderWaals . This data structure also allows for the
archiving of related quantities such as the ideal gas
constant (R) or the specific heat at constant pressure or
volume (cp, cv). These are recorded using the SIDS

standardized name identifiers IdealGasConstant ,
SpecificHeatVolume , etc.

The molecular viscosity model structure,
ViscosityModel_t , specifies the model used for relating
molecular viscosity (µ) to temperature. It supports constant,
power law and Sutherland's Law models, as well as their
related quantities.

The ThermalConductivityModel_t structure specifies
the model used for relating the thermal conductivity
coefficient (k) to the temperature. The SIDS support the
constant Prandtl number (Pr = µ cp/k) case, power law and
the Sutherland's Law, with their related quantities.

The TurbulenceClosure_t structure describes the
turbulence closure for the Reynolds stress terms of the
Reynolds-averaged Navier-Stokes equations. The types
supported areEddyViscosity , ReynoldsStress and
ReynoldsStressAlgebraic . The SIDS support
turbulence models, such asAlgebraic_Baldwin-Lomax

or OneEquation_Spalart-Allmaras , for example.
Details on turbulence closure and modeling can be found in
reference 2.

2.3.8 Reference State:ReferenceState_t

The ReferenceState_t data structure contains a set of
reference state flow conditions defined at a reference
location or condition. The use of data-name identifiers
allows once more the standardization of the data. The
ReferenceState_t structure holds the definition of flow
state quantities such asVelocitySound , Temperature ,
PressureStagnation , etc. It also allows for the storage
of the dimensional units and any related documentation.

2.3.9 Data Class and Conversion

DataClass_t identifies the class of a given piece of data.
These classes divide data into different categories depending
on dimensional units and normalization associated with the
data. The data class calledDimensional specifies
dimensional data. Nondimensional data that is normalized
by dimensional reference quantities are included in the data
class NormalizedByDimensional . In contrast,
NormalizedByArbitraryDimensional specifies non-
dimensional data typically found in completely
nondimensional databases, where all fields and reference
data are nondimensional.NondimensionalParameter

indicates nondimensional parameters such as the Mach
number and the lift coefficient. Constants such asπ are
designated by the data classDimensionlessConstant .

The DataConversion_t data structure contains
conversion factors for recovering raw dimensional data from
given nondimensional data. These conversion factors are
typically associated with nondimensional data that is
normalized by dimensional reference quantities (class
NormalizedByDimensional ).

GoverningEquations_t GasModel_t

ViscosityModel_t ThermalConductivityModel_t

TurbulenceModel_t TurbulenceClosure_t

EquationDimension Descriptor_t

FlowEquationSet_t

Fig.7 Flow Equation Set Data Structure
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2.3.10 Dimensional Units and Exponents

The data structureDimensionalUnits_t describes the
system of units used to measure dimensional data. It is
composed of a set of types that define the mass, length,
time, temperature and angle units.

The dimensionality of the data is described by defining
the exponents associated with each of the fundamental
units, i.e. mass, length, time, temperature and angle. The
dimensional exponents are recorded in the data structure
DimensionalExponents_t .

2.3.11 Precedence Rule Within the Hierarchy

A few types of data structures defined in the SIDS may
be recorded at several levels of the hierarchy. These
include entities for describing data class, system of
dimensional units, reference states and flow equation
sets. The precedence rule established by the SIDS states
that if such structures are present at one level, they take
precedence over all corresponding information existing
at higher levels of the CGNS hierarchy. Essentially, the
SIDS specification establishes globally applicable data
with provisions for recursively overriding them with
local data.

The ReferenceState_t data structure for example,
may be defined within aCGNSBase_t structure, a
Zone_t or ZoneUnstructured_t structure, or at
several levels of the boundary condition hierarchy. If it
is defined simultaneously within aCGNSBase_t data
structure, and aZone_t contained inCGNSBase_t, the
reference data defined for the zone supersedes the globa
definition within that zone only. This relationship is
displayed on figure 8.

2.3.12 Family Data Structure:Family_t

The Family_t data structure connects the geometry
data of the various components of a model to the
computational grid in such a way that given a mesh
surface, the underlying geometry can be determined, or
vice versa. The geometry-to-grid connectivity is defined
by associating node or cell regions to geometric entities
described within a given CAD data file. The SIDS
specification does not define a new standard for the
storage of CAD data, but rather establishes conventions

for referencing geometric entities stored in a CAD database.

There is rarely a one-to-one connection between mesh
regions and geometric entities. Consequently, the mesh-
geometry associations make use of a layer of indirection.
Rather than linking the geometry data to the mesh entities
(nodes, edges and faces), these data are associated with
intermediate objects. The intermediate objects are in turn
linked to the nodal regions of the computational mesh.
These intermediate objects are called CFD families. Node
and family association is implemented by assigning a family
name to each boundary condition patch of the mesh zones.
These family names serve as pointers to the various
Family_t sub-structures bearing the same names.

The Family_t data structure is illustrated in figure 9. It
contains two main sub-structures,GeometryReference_t

and FamilyBC_t . It may also contain any related
documentation.
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Fig.8 Globally Applicable Data and Precedence
GeometryReference_t FamilyBC_t Descriptor_t

Family_t

Fig.9 Family Data Structure
nautics and Astronautics

l

he GeometryReference_t data structure identifies the
AD systems used to generate the geometry, the CAD files
here the geometry is stored and the list of CAD entities
ithin these files corresponding to the given family. There
no restriction on the CAD system as long as it supports

AD entity attributes, used as handles in the referencing
ocess. A mesh may be associated to any number of CAD
es, which may encompass several CAD systems. It is also
ssible to use directly the CAD entity names to link the

esh to the geometry. In such case, the family names are
t to the CAD attributes and the list of CAD entity
tributes in theGeometryReference_t data structure is
ft blank.

he FamilyBC_t data structure provides an alternative for
e definition of boundary conditions. As discussed earlier
section 2.3.6, the boundary conditions may be defined on
esh patches under each zone structure. This has the
vantage of providing a means for storing mesh related
w solution data. The other option for specifying
undary condition is to link them to the CFD families.
hen both mesh patch boundary condition and family
undary condition are defined simultaneously for a same
undary, the definition attached to the mesh entity has
ecedence over the one defined for the geometric family.

he main advantage of associating the boundary conditions
the families is that the mesh topology or mesh density

ay be modified without altering the boundary condition
ttings. Another motivation for choosing this alternative
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method is that any given boundary condition needs only
to be defined once, even if it is applied to several patches
over multiple zones. TheFamilyBC_t structure
includes the boundary condition type and various
auxiliary data.

This concludes the overview of the SIDS. Reference 2
provides a comprehensive definition of the SIDS
conventions, data structures and data-name identifiers.
This information is also available at
http://www.cgns.org.

2.4. The SIDS-to-ADF Mapping

As seen in the previous sections, the ADF and ADF Core
define a new database format and its supporting
software, while the SIDS specify precisely the contents
of a CGNS archive. These two elements are combined
to form the CGNS hierarchical database specification.
This coupling of the ADF and SIDS is called “SIDS-to-
ADF Mapping”. It transfers the constituents of the SIDS
to an underlying ADF structure. Each data structure
defined in the SIDS is mapped to one or more ADF
nodes, while maintaining the hierarchical organization of
the SIDS. The result is called a CGNS database. It
consists of a sub-tree of an ADF file or files rooted at a
node labeledCGNSBase_t. It conforms to the SIDS
model as implemented by the “SIDS-to-ADF Mapping”
specification, thus may be accessed using the ADF Core
library.

The “SIDS-to-ADF Mapping” specification associates
each piece of information defined in the SIDS to a
precise location in the ADF structure.4 In most cases,
the ADF node label holds the data structure type
identifier as defined by the SIDS. For example, a zone
defined using the data structureZone_t or
ZoneUnstructured_t in the SIDS would be associated
with an ADF node labeled Zone_t or
ZoneUnstructured_t in the CGNS database.

The names of the children nodes must be unique for any
given parent. For example, a CGNS database contains
as many children of typeZone_t as there are structured
grid zones in the domain; each zone must have a distinct
name. By convention, some ADF node names within the
CGNS hierarchy are fixed. However most node names
can be specified by the user. The “SIDS-to-ADF
Mapping” specification states that the supporting
software must provide for default naming capability.
The default names are constructed by replacing the label
last two characters (_t ) with a positive integer.
According to this convention, the names forN structured
zones under the sameCGNSBase_t data structure are
Zone1, Zone2, Zone3, …, ZoneN.

The entry structure of the SIDS, called theCGNSBase_t, is
mapped to an ADF node labeledCGNSBase_t. Figures 3
and 10 illustrate the one-to-one correspondence between the
SIDS and the “SIDS-to-ADF Mapping”. There may be one

or many CGNSBase_t nodes in a CGNS file. The index
dimension (IndexDimension ) of the computational space
is stored in the data field of theCGNSBase_t node. The
data type is therefore integer, specifically “I4” (using the
ADF nomenclature). In this case, the dimension and
dimension vector are both equal to one.

The CGNSBase_t node may have several types of children.
The data structure for a single block structured zone, located
directly under theCGNSBase_t node, is an ADF node
labeled Zone_t . The data field for Zone_t holds the
number of vertices and cells within each dimension of the
computational domain. The data type is I4, the dimension
of the data array is 2, and the dimension vector is
(IndexDimension , 2). For a structured 3D zone, this
translates into a 3x 2 array of integers. The first three
values express the number of vertices within each
dimension, while the last three contain the number of cells.

EachZone_t node may contain oneGridCoordinates_t

node, one ZoneGridConnectivity_t node, one
ZoneBC_t node, and one or severalFlowSolution_t

nodes as shown in figure 11. These nodes do not contain
any data (data type = MT), but instead, open new branches
of the ADF tree structure for storage of their respective data
structures. Grid coordinates, for example, are stored using
the generic node typeDataArray_t . Each coordinate
vector is contained into an ADF node labeled
DataArray_t and located directly under the
GridCoordinates_t node. The arrays of coordinate
values carry the dimension specified byIndexDimension

Structured Zone Node
Label = Zone_t, Name = (user defined)

Data Type = I4, Dimension = 2, Dim.Vector = IndexDimension,2
Data = VertexSize[IndexDimension], CellSize[IndexDimension]

CGNSBase Node
Label = CGNSBase_t, Name= (user defined)
Data Type=I4, Dimension=1, Dim.Vector=1

Data = IndexDimension

Unstructured Zone Node
Label = ZoneUnstructured_t, Name = (user defined)

Data Type = I4, Dimension = 2, Dim.Vector = IndexDimension,2
Data = VertexSize[IndexDimension], CellSize[IndexDimension]

Family Node
Label = Family_t, Name = (user defined)

Data Type = MT, Dimension = N/A, Dim.Vector = N/A
Data = N/A

Fig.10 SIDS-to-ADF Mapping of Upper Levels
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and may be written in single or double precision (R4 or
R8 data type). The dimension vector is a function of the
vertex size and the number of rind-planes associated
with the data array.

(CGNS API), and then a few words describing
unambiguously its functionality. The Fortran interface
names are built identically, with the addition of the suffix
“_f ” to distinguish them from the C function nomenclature.
For example, a CGNS zone may be read using the C
function cg_zone_read or the Fortran interface routine
cg_zone_read_f .

The first step when accessing a CGNS file consists in
opening the data exchange process. This is accomplished
by the functioncg_open . This routine opens a new or
existing CGNS file, initializes the file if it is new, and set up
the library internal data structures. An existing CGNS file
may be opened to read or modify its contents, while a new
one may only be opened for writing. One of the arguments
of the functioncg_open is therefore to specify the action or
mode desired:READ, WRITEor MODIFY. The last step when
completing the data exchange with a CGNS file is
performed using the routinecg_close . This function
updates the contents of the file stored on disk and terminates
the dialogue.

When the file is opened withcg_open , in modesREADor
MODIFY, the CGNS library parses the entire tree structure
and loads most of its contents in memory. This internal
representation of the data is stored in memory using C
structures similar to those described in the SIDS. Similarly,
when a CGNS file is opened with modeWRITE, the
information transmitted by the CFD application is first
accumulated in the internal data structure, and only written
Zone Boundary Conditions Node
Label = ZoneBC_t, Name = ZoneBC

Data Type = MT, Dimension = N/A, Dim.Vector = N/A
Data = N/A

Structured Zone Node
Label = Zone_t, Name = (user defined)

Data Type = I4, Dimension = 2, Dim.Vector = IndexDimension,2
Data = VertexSize[IndexDimension], CellSize[IndexDimension]

Flow Solution Node
Label = FlowSolution_t, Name = (user defined)

Data Type = MT, Dimension = N/A, Dim.Vector = N/A
Data = N/A

Zone Grid Connectivity Node
Label = ZoneGridConnectivity_t, Name = ZoneGridConnectivity

Data Type = MT, Dimension = N/A, Dim.Vector = N/A
Data = N/A

Coordinate Array Node
Label = DataArray_t, Name = (user defined)

Data Type = R4 or R8, Dimension = IndexDimension, Dim.Vector = DataSize[]
Data = Grid Coordinate Values

Grid Coordinates Node
Label = GridCoordinates_t, Name = GridCoordinates
Data Type = MT, Dimension = N/A, Dim.Vector = N/A

Data = N/A

Fig.11 SIDS-to-ADF Mapping of a Zone
American Institute of Aeronautics and Astronautics
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These few examples demonstrate the process followed to
map the SIDS contents onto the ADF Structure.
Reference 4 provides a complete description of the entire
“SIDS-to-ADF Mapping” specification. This
information is also available at http://www.cgns.org.

2.5 The CGNS Library

This section outlines the CGNS library, which was
designed to ease the implementation of CGNS by
providing developers with a collection of handy I/O
functions.5 Since knowledge of the ADF core is not
required to use this library, it greatly facilitates the task
of incorporating the CGNS system in any CFD
applications.

The CGNS library is based on the SIDS and “SIDS-to-
ADF Mapping” specifications, and built using the ADF
Core. It allows reading and writing CGNS databases
through the use of a user friendly API. The library is
written in ANSI C to enhance its portability. However,
each function has a Fortran77 interface counterpart to
ease implementation in Fortran77 or Fortran90
applications. Each C routine name has two segments,
first the prefix “cg ” indicating the origin of the routine

to the storage media when the data exchange is terminated
using cg_close . The use of an internal data depiction
affords the advantage of increasing the performance of
subsequent I/O requests, since the information is readily
available without requiring additional tree parsing. Another
benefit stems from limiting the relatively slow
communication to and from the storage media, since most of
these data exchanges take place all at once, when calling
cg_open or cg_close .

While cg_open and cg_close take care of the
communication between the storage media and the library
internal data representation, the other functions of the
CGNS library handle the data exchange between the CFD
applications and the memory depiction of the data. This is
schematically demonstrated in Figure 12. This
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Fig.12 Data Flow
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representation of the data flow has one exception. In
order to reduce memory usage and improve execution
speed, large arrays such as grid coordinates or flow
solutions are not actually stored in memory. Instead,
only their ADF ID numbers (addresses) are recorded in
the internal data representation. If these large arrays are
requested in subsequent function calls, the ADF
addresses enable the software to locate them
immediately on disk, without requiring a search through
the tree structure. Likewise, when a CGNS file is
opened in writing mode, the large arrays transmitted to
the library are immediately written to disk. Since the
hierarchical data structure holds only the root node at
this point, the nodes containing the large data arrays are
recorded directly under the ADF root node. When the
file is closed, these arrays are moved (by reference only)
to their appropriate location in the CGNS hierarchy.

The CGNS library was designed to mirror the structure
of the SIDS. Each type of data structure defined in the
SIDS is supported in the CGNS library by a set of
reading and writing functions. For example, the data
exchange for a structured zone is completely handled by
the following three functions:

� cg_nzones(…) :read the number of zones.

� cg_zone_read(…) :read the zone information.

� cg_zone_write(…) :write a new zone.

Similar sets of functions exist for every data structure
defined by the SIDS. The hierarchical organization of
this API facilitates the implementation of CGNS in CFD
applications, while insuring its extensibility for future
development of the SIDS framework.

Most C functions of the CGNS library return an integer
value representing the error status. The Fortran functions
contain an additional argument,ier , which holds the
value of the error status. An error status different from
zero reports the occurrence of a problem during the
execution of a function. Precise and concise error
diagnosis may be printed using one of the error handling
functions of the CGNS library:

� cg_get_error() :return the error message in a
character field.

� cg_error_print() :get and print the error
message.

� cg_error_exit() :get and print the error
message, and terminate program execution.

The CGNS library defines variable types in conformance
with the SIDS nomenclature. These facilitate the
implementation of the CGNS API. The various
boundary condition identifiers, for example, are part of
an enumeration for the variable typeBCType_t .

BCType_t = { BCInflowSupersonic,

BCSymmetryPlane,…,

BCWallViscous}

These specialized variable types are defined in the C include
file cgnslib.h by an enumeration of keywords admissible
for any variable of these types (typedef enum ). This file
must be included into any C application program using
these data types. Similarly in Fortran, these keywords are
defined as integer parameters in the include file
cgnslib_f.h . This file must be included into any Fortran
application using these keywords. The utilization of
keywords affords the opportunity to work with SIDS name
identifiers in CFD applications, without having to deal with
character string variables. The identifiersOverset or
Abutting1to1 may be used integrally in the CFD
application to identify an interface type. Likewise, the
keywords Vertex , CellCenter , FaceCenter are
meaningful to the library, when specified in a function’s
argument list, to describe a grid location. The CGNS library
offers these lists of keywords as a convenience to the
programmers using the API. Their utilization enhances the
code visibility while facilitating variable declaration and
memory allocation.

Another asset of the CGNS library is to directly retrieve the
ADF ID number of any ADF node in the database. A
simple function call reveals the ADF address of nodes such
as CGNSBase_t, Zone_t , GridCoordinates_t ,
ZoneBC_t , etc. This feature helps implementing any type
of site specific information, which may not yet be supported
by the CGNS SIDS and API.

Site specific data may be included anywhere within the
CGNS hierarchy without hindering the database
compatibility with the CGNS API. In order to include site
specific data structures, these must be simply recorded in
ADF nodes tailored for their use, by means of the ADF
Core. Since the CGNS API searches for specific node
labels while ignoring the others, any addition of node types
has no effect on its functionality. The CGNS library
software and documentation are available at
http://www.cgns.org.

This concludes the description of the CGNS elements and
their relationship with one another. The next section
demonstrates the implementation of CGNS by means of
three small examples, which are thoroughly explained.
Then it reviews the status of the CGNS system
incorporation in various research and industrial CFD
applications. Finally it presents the schedule of releases of
the CGNS system’s software and documentation, planned
for 1998, and explains the differences between the release
versions.
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3. Implementation

Section 3.1 shows a few examples on how to use the
CGNS library to read and write CGNS databases. In
each example, the error checking, variable declarations
and memory allocations were omitted to lighten the text.
The parameters returned by each function are printed in
bold to distinguish them from the input arguments.

3.1 Examples

3.1.1 Read a Multi-Block Structured Mesh

The following C program (figure 13) reads theX-
coordinate vector of all structured zones in all the
CGNSBase_t data structures included in a CGNS file.
The functions and variables used in this example are
described in detail in the following paragraphs.

Fig.13 Example Reading Bases, Zones and Coordinates

In this first example, a CGNS file, identified by the
character variableFileName , is opened for reading
(mode =MODE_READ). Since several CGNS files may be
opened simultaneously, the functioncg_open returns a
file number (FileNo ). It consists of an integer value
uniquely identifying a file in the CGNS library. The file
number must be used in every subsequent function calls
to specify which of the opened CGNS files must be
accessed.

The next function,cg_nbases , returns the number of
CGNSBase_t structures in the CGNS file (Nbases ).
There is no limit on the number ofCGNSBase_t data
structures contained in a file. Several databases could be
used to record slightly different configurations of a same
model for example. TheCGNSBase_t information is
read with the functioncg_base_read . Given a file
number and a database number (BaseNo), this routine
returns the name of a database (BaseName) and the
dimension of the computational domain
(IndexDimension ).

The number of zones (NZones) within eachCGNSBase_t

data structure is extracted using the functioncg_nzones .
The zone name (ZoneName) and size (ZoneSize ) are read
with the routine cg_zone_read for each zone number
(ZoneNo). Note that the zone size is a vector of integers
containing both the numbers of vertices and cells within
each computational dimension.

The functioncg_coord_read returns the location vector of
a coordinate in the format and range requested. The
coordinate requested is specified using its data-name
identifier, in this caseCoordinateX . The precision in
which the data array must be provided to the CFD
application may be set, regardless of the data type used to
store this information on disk. The CGNS library handles
the conversion if necessary. A data array recorded as
double precision in the storage media may be read as single
precision by the CFD application, or vice versa. This
routine supports two data formats,RealSingle and
RealDouble , for single and double precision values
respectively.RealSingle andRealDouble are defined as
keywords in the library include file. The data array range
requested is specified by the integer vectorsRangeMin and
RangeMax. These vectors specify the minimum and
maximum computational index value of the range requested,
within each dimension.

3.1.2 Read the Solution Data of a Structured Zone

Figure 14 shows an example of a Fortran program reading
the solution data contained in a zone. A zone may hold any
number of flow solutions. These could be recorded at
different time steps for example. Each flow solution may in
turn contain any number flow variables. The functions and
variables used in this example are detailed in the following
paragraphs.

Fig.14 Example Reading Flow solution Data

cg_open(FileName, MODE_READ, & FileNo )
cg_nbases(FileNo, & NBases);
for (BaseNo=1; BaseNo<=NBases; BaseNo++){

cg_base_read(FileNo, BaseNo, BaseName,
&IndexDimension );

cg_nzones(FileNo, BaseNo, & NZones);
for (ZoneNo=1;ZoneNo<=NZones;ZoneNo++){

cg_zone_read(FileNo, BaseNo, ZoneNo,
ZoneName, ZoneSize );

cg_coord_read(FileNo, BaseNo, ZoneNo,
“CoordinateX”,RealSingle,

RangeMin, RangeMax, X);
}}
cg_close(FileNo);

call cg_nsols_f(FileNo, BaseNo, ZoneNo,
NSolutions , ier )

do SolutionNo=1, NSolutions
call cg_sol_info_f(FileNo, BaseNo,

ZoneNo, SolutionNo, SolutionName ,
GridLocation , ier )

call cg_nfields_f(FileNo, BaseNo,
ZoneNo, SolutionNo, NFields , ier )

do FieldNo=1, NFields
call cg_field_info_f(FileNo, BaseNo,

ZoneNo, SolutionNo, FieldNo,
DataType , FieldName , ier )

call cg_field_read_f(FileNo, BaseNo,
ZoneNo, SolutionNo, FieldName,
RealDouble, RangeMin, RangeMax,
Values , ier )

enddo ! field loop
enddo ! solution loop
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Each Fortran function holds one more argument than its
C counterpart. The error status,ier , is the return value
of most C routines. Since Fortran subroutines do not
allow for return value, the error status is included in the
argument list.

The Fortran routinecg_nsols_f returns the number of
flow solutions recorded for a particular zone of a CGNS
database. A zone may hold none to several flow solution
sets. Each flow solution set (SolutionNo ) is qualified
by its name (SolutionName ) and by the grid location of
its solution data, such asVertex , CellCenter ,
EdgeCenter , etc. These may be extracted using the
function cg_sol_info_f . The number of solution
vectors (Nfields ) contained in a solution set is obtained
with the routinecg_nfields_f .

The function cg_field_info_f is optional. It
determines the name of the solution vector (FieldName )
if it is not yet known by the application. It also returns
the data type (DataType ) used to stored the solution on
disk. The solution vectors are read using the routine
cg_field_read_f . This routine works the same way
ascg_coord_read defined in the previous example. It
allows setting the name of the variable desired
(FieldName ). It is advised but not mandatory to use the
data-name identifiers defined in the SIDS, e.g.Density ,
Massflow , etc. The precision of the solution vector
returned by the function may be set by the CFD
application (RealDouble or RealSingle )
independently of the format used to record these data on
disk. As for coordinate vectors, the CGNS API
compares the data type on disk with the one requested
and automatically accomplishes any necessary
conversions. Finally, the solution vectors may be read
only partially, within the range prescribed with
RangeMin and RangeMax. This is particularly useful
when plotting cross section results, for example.

3.1.3 Write Zone Connectivity and Overset Holes

Three types of block-to-block connectivity are supported
by the SIDS and CGNS API: one-to-one abutting, which
is also called point matching or C0, abutting with
mismatched points and oversets. The grid connectivity
information for overset grids must also account for the
overset holes within each zone. The C example shown
on figure 15 demonstrates how to write the connectivity
information for the three types supported, as well as
overset hole information, using the CGNS API.

The routinecg_conn_write can be used to write any of
the three types of block-to-block connectivity for a given
zone. The interface may be identified with a name
ConnectName . The computational mesh indices used
in the definition of the zone sub-range may refer to
vertices or cells. The variableGridLocation holds the

location adopted,Vertex or CellCenter . The type of
connectivity being recorded is specified withConnectType

to one of the following name identifiers:Overset ,
Abutting or Abutting1to1 . DonorName holds the name
of the adjacent zone (donor) interfacing with the current
zone (receiver).

The sub-range of nodes or cells on the receiver side may be
defined using a range or a discrete list of points or cells. If a
range of points or cells is used, thePointSetType is set to
PointRange . When a discrete list of points or cells is used,
the PointSetType equalsPointList . The number of
points or cells is defined byNpoints on the receiver side
and NpointsDonor on the donor side (adjacent block).
For a point set typePointRange , this number always
equals two. For a point set typePointList , it equals the
number of points or cells in the point set. The list of points
or cells is recorded inPoints on the receiver side and
DonorPoints on the donor side. The donor points may
only be defined using aPointList .

In the particular case of a point-to-point matching between
the two zones, the donor points may be expressed with
integer values. For all other cases, the donor points are real
values comprising the interpolation factors used to locate
the receiver points in the donor zone. The variable
DonorDataType holds the format used to define the donor
points. The eligible data types areInteger , RealSingle

and RealDouble . This function returns an index for the
interface number.

The functioncg_hole_write writes a new overset hole in
an existing zone. The overset hole name is specified by
HoleName. Its location is defined by a list of indices, which
may refer either to vertices or cells location. The grid
location is identified withGridLocation , and may take the
valuesVertex or CellCenter . The extent of the overset
hole is specified using one or more range of points or cells
(PointRange ), or with a discrete list of all points or cells in
the overset hole (PointList ). The type of point set used is
recorded inPointSetType . The number of points or cells

for (ConnNo=1; ConnNo<=NConns; ConnNo++)
{

cg_conn_write(FileNo, BaseNo, ZoneNo,
ConnectName, GridLocation,ConnectType,
PointSetType, Npoints, DonorName,
NpointsDonor, DonorDataType, Points,
DonorPoints, InterfaceNo );

}
for (HoleNo=1; HoleNo<=Nholes;HoleNo++){

cg_hole_write(FileNo, BaseNo, ZoneNo,
HoleName, GridLocation, PointSetType,
NPoints, Points, HoleNo )

}

Fig.15 Example Writing Zone Grid Connectivity
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in the point set is defined byNpoints and the list of
points or cells is recorded inPoints . This routine
returns an index number for the overset hole.

3.2 Applications Supporting CGNS

Several applications have already implemented the
CGNS standard successfully. Researchers at NASA
Ames have incorporated the CGNS data exchange
capability into a developmental version of PEGASUS
and OVERFLOW, for fluid dynamics computation on
overset grids. Similarly, the CGNS system has been
implemented in a research version of the CFL3D solver
at NASA Langley, which performs flow computations
on multi-block, one-to-one abutting meshes. The ICEM
CFD Visual3 post-processor reads CGNS files directly,
without the need for data format translation.
Additionally, several CFD applications such as Plot3D,
NPARC, TLNS3D, ICEM CFD and WIND have
translation routines to and/or from the CGNS file
standard.

The CGNS system is being released to the public for the
purpose of establishing a standard for aerodynamic data
storage. Version 1.0 of the CGNS system comprises the
ADF and ADF Core software and documentation, the
SIDS documentation for multi-block structured CFD
analysis, the corresponding “SIDS-to-ADF Mapping”
specification, and the CGNS library for most structures
defined in the SIDS. A second release is planned for
September 1998, which will include support for
unstructured and hybrid configurations, as well as
geometry-to-mesh association.

4. Conclusion

This paper described the CGNS system, from its original
conception to its successful implementation. It has been
developed with participation from NASA and US
airframe manufacturers to help stabilize the archiving of
aerodynamic data. The CGNS system is conceived to
support seamless communication of analysis databases
between user sites, system architectures, and CFD
applications, without concerns for I/O compatibility. It
incorporates a set of conventions for the processing and
archiving of computational fluid dynamics data, aimed at
providing a standard for processing CFD information.

The CGNS system is built over a hierarchical data
structure called ADF. The hierarchical quality of this
data structure is particularly suited for the storage of
CFD information, which is typically composed of a
small number of very large arrays. The tree structure
may be quickly traversed and sorted without the need of
processing irrelevant information. The databases

themselves are stored in compact C binary format. They are
made machine independent through internal byte ordering
translations, performed as needed and invisible to the user
or application. Efficient linking capacity allows the
partitioning of the data over several files without reducing
the performance of the data exchange.

The conventions defined in the SIDS provide for the
recording of an extremely complete and flexible problem
description. Due to the nature of typical CFD data sets, it is
possible to include in the CGNS data structure thorough
description of the data with relatively little storage overhead
and performance penalty.

The CGNS system supports structured, unstructured and
mixed topology, where multi-block connectivity may be
either one-to-one abutting, mismatched abutting or overset.
A database may contain any number of structured and/or
unstructured zones. For unstructured zones, the element
connectivity can be stored for a wide range of linear and
higher order element shapes. The mesh data is linked to the
CAD data within the CGNS system to facilitate quick re-
meshing after design changes or mesh optimization.

The flow solutions may be defined at the vertices, or at cell,
face or edge centers. Solution vectors are stored using
precise naming conventions. Any number of flow variables
may be recorded, with or without the use of standardized
names. Boundary conditions may be defined on the
computational mesh and/or on the CAD geometry,
whichever is best suited for a particular CFD application.

The CGNS system also provides for the storage of several
types of auxiliary data. This include the conventions for
archiving the governing flow equations, the reference state
quantities, the convergence history information, any generic
discrete or integral data, the dimensional units and
exponents, and the nondimensionalization information.
User's comments or documentation may be appended nearly
anywhere. Site specific data can be incorporated throughout
a CGNS database without hindering its compatibility with
the CGNS API.

The CGNS system may be implemented in any CFD
application by way of a complete and extensible library of
functions. The API is platform independent and can be
easily implemented in C, C++, Fortran77 and Fortran90
applications. It performs extensive error checking on the
database and informs the user of any irregularities via
precise error diagnosis messages. Currently the CGNS
system is available on most architecture commonly used for
CFD analysis: Cray/Unicos, SUN/Solaris, SGI/IRIX,
IBM/AIX, HP/UX, DEC-Alpha/OSF. Windows NT
support, on Dec and Intel platforms, is planned in the near
future. Several applications, in the CFD research
community and in industry, have already incorporated the
CGNS standard successfully.
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The CGNS system is offered to the CFD community for
the purpose of establishing a standard for aerodynamic
data storage. Documentation, source code, examples of
implementation, and compiled libraries are available at
www.cgns.org, and online support may be obtained by
writing to CGNS-Support@cgns.org. By improving the
interoperability of existing and future CFD tools,
software development affords the opportunity to focus
on functionality and reliability. The CGNS system
should lead to the development of shared, reusable
software selected on technical merit without concern for
I/O compatibility.

The ultimate goal of the CGNS system is to provide a
standard designed to satisfy the requirements of the
whole CFD community. Consequently, the present and
future developments of CGNS are closely tailored to the
need of CFD groups in industry, government research
centers, and academia. Future projects may include the
support of material properties, chemistry data, real gas
effects, electromagnetic data, multi-phase flow, etc. The
CGNS system could be extended to other types of
engineering analysis data, and therefore serve multi-
disciplinary applications. Experimental results such as
pressure paint data, flight test and wind tunnel
measurements could also be incorporated to the SIDS.
This would allow a global standard for the recording of
both numerical and experimental data. Likewise,
advanced diagnosis on CGNS grids would be a handy
feature. In addition, the software capability will need to
follow the ever-changing trend of the industry. Runtime
data management or parallel data handling (MPI) could
become a desirable asset for CFD data processing.
Similarly, special compression tools may eventually be
required to support complex unsteady 3D cases. The
future of CGNS resides primarily in the requirements of
its users, and the CGNS team engages itself in
continuing to serve the needs of the CFD community.

5. Acknowledgments

The CGNS system was developed by the Boeing
Commercial Airplane Group under NASA contract
NAS1-20267 during the period 1995-98, with extensive
participation by a team of scientists and engineers from
NASA Langley Research Center, NASA Ames Research
Center, NASA Lewis Research Center, McDonnell-
Douglas Corporation (now Boeing St-Louis), Arnold
Engineering Development Center and ICEM CFD
Engineering. The entire CGNS team (about 35
members) deserves credit for the work accomplished,
and the project might easily be cited as a prime example
of effective voluntary cooperation between NASA and
industry.

The authors wish to express the noteworthy contributions of
a few individuals who dedicated special effort to this
project. Thomas Dickens’s software knowledge was
valuable in the design and realization of the ADF Core, now
maintained by Dan Owen. Ben Paul secured the initial
funding and shepherded the project through most of the
contract. Wayne Jones contributions were invaluable for
testing the CGNS abstractions in real code, helping in the
development of the ADF Core and creating the first high
level functions. Chuck Keagle designed and executed
careful testing procedures for the ADF Core. Gary Shurtleff
wrote the TLNS3D and NPARC prototypes, which were the
first examples of working CGNS software. Special thanks
go to Chris Rumsey and Cetin Kiris’s pioneering efforts to
implement the CGNS API in NASA solvers. Ray Cosner
was a reliable supporter who helped move things forward
when progress slowed. Mark Fisher’s expertise in data
management brought insightful suggestions for the design
of the CGNS API. Finally, thanks to Susan Jacob’s initial
guidance, which helped move the team together in the same
direction.

References
1 CGNS Team, “The CGNS System Overview and Entry
Level Document”, Draft, Version 1.0, May 1998.
2 Allmaras, S., “CGNS Standard Interface Data Structures”,
Draft, May 1997.
3 CGNS Team, “The ADF User’s Guide”, May 1997.
4 CGNS Team, “CGNS File Mapping Manual”, Draft,
October 1996.
5 Poirier, D., “CGNS I/O Library”, Draft, September 1997.
6 Coirier, W.J., Golos, F.N., Harrand, V.J., Przekwas, A.J.,
“CFD-DTF: A Data Transfer Facility for CFD and Multi-
Disciplinary Analyses”,36th Aerospace Sciences Meeting &
Exhibit, AIAA-98-0125, Reno, NV, January 1998.
7 “Getting Started with HDF”, National Center for
Supercomputing Applications (NCSA), University of
Illinois, Chicago, Illinois, May 1993.
8 “Common File Format (CFF) Programmers Guide”,
McDonnell-Douglas Aerospace Corporation, St-Louis
Missouri, December 1992.
9 Rew, R. K. and G. P. Davis, “The Unidata netCDF:
Software for Scientific Data Access,”Sixth International
Conference on Interactive Information and Processing
Systems for Meteorology, Oceanography, and Hydrology,
Anaheim, California, American Meteorology Society,
February 1990.
10 “Common File Programmers Guide”, The Boeing
Company, St-Louis Missouri, February 1998.
11 “The WIND Code User’s Guide”, The NPARC Alliance,
Draft, October 1997.


	1
	1. Introduction
	2. The Elements of the CGNS System
	2.1 The Data Structure ADF
	2.2. ADF Supporting Software: The ADF Core
	2.3. The Standard Interface Data Structures, SIDS
	2.4. The SIDS-to-ADF Mapping
	2.5 The CGNS Library
	3. Implementation
	3.1 Examples
	3.2 Applications Supporting CGNS
	4. Conclusion
	5. Acknowledgments
	References

